A Stone-Weierstrass theorem for Banach lattices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Banach-stone Theorem for Riesz Isomorphisms of Banach Lattices

Let X and Y be compact Hausdorff spaces, and E, F be Banach lattices. Let C(X,E) denote the Banach lattice of all continuous E-valued functions on X equipped with the pointwise ordering and the sup norm. We prove that if there exists a Riesz isomorphism Φ : C(X,E) → C(Y, F ) such that Φf is non-vanishing on Y if and only if f is non-vanishing on X, then X is homeomorphic to Y , and E is Riesz i...

متن کامل

The Stone-weierstrass Theorem

The really new thing about Stone’s approach to the approximation theorem was the approach via lattices of continuous functions, although Lebesgue had noticed the importance of approximating the absolute-value function earlier. There is a segment of the mathematical community formed of people who are as likely to encounter a lattice in their work as an algebra and for whom the lattice version of...

متن کامل

Strengthened Stone-weierstrass Type Theorem

The aim of the paper is to prove that if L is a linear subspace of the space C(K) of all real-valued continuous functions defined on a nonempty compact Hausdorff space K such that min(|f |, 1) ∈ L whenever f ∈ L, then for any nonzero g ∈ L̄ (where L̄ denotes the uniform closure of L in C(K)) and for any sequence (bn)n=1 of positive numbers satisfying the relation P∞ n=1 bn = ‖g‖ there exists a se...

متن کامل

A multiplicative Banach-Stone theorem

The Banach-Stone theorem states that any surjective, linear mapping T between spaces of continuous functions that satisfies ‖T (f)− T (g)‖ = ‖f − g‖, where ‖ · ‖ denotes the uniform norm, is a weighted composition operator. We study a multiplicative analogue, and demonstrate that a surjective mapping T , not necessarily linear, between algebras of continuous functions with ‖T (f)T (g)‖ = ‖fg‖ m...

متن کامل

A Stone-weierstrass Type Theorem for Semiuniform Convergence Spaces

A Stone-Weierstraß type theorem for semiuniform convergence spaces is proved. It implies the classical Stone-Weierstraß theorem as well as a Stone-Weierstraß type theorem for filter spaces due to Bentley, Hušek and Lowen-Colebunders [1].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1973

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-47-1-75-82